ABC-Miner+: constructing Markov blanket classifiers with ant colony algorithms
نویسندگان
چکیده
ABC-Miner is a Bayesian classification algorithm based on the Ant Colony Optimization (ACO) meta-heuristic. The algorithm learns Bayesian network Augmented Näıve-Bayes (BAN) classifiers, where the class node is the parent of all the nodes representing the input variables. However, this assumes the existence of a dependency relationship between the class variable and all the input variables, and this relationship is always a type of “causal” (rather than “effect”) relationship, which restricts the flexibility of the algorithm to learn. In this paper, we extended the ABC-Miner algorithm to be able to learn the Markov blanket of the class variable. Such a produced model has a more flexible Bayesian network classifier structure, where it is not necessary to have a (direct) dependency relationship between the class variable and each of the input variables, and the dependency between the class and the input variables varies from “causal” to “effect” relationships. In this context, we propose two algorithms: ABC-Miner+1, in which the dependency relationships between the class and the input variables are defined in a separate phase before the dependency relationships among the input variables are defined, and ABC-Miner+2, in which the two types of dependency relationships in the Markov blanket classifier are discovered in a single integrated process. Empirical evaluations on 33 UCI benchmark datasets show that our extended algorithms outperform the original version in terms of predictive accuracy, model size and computational time. Moreover, they have shown a very competitive performance against other well-known classification algorithms in the literature.
منابع مشابه
Extending the ABC-Miner Bayesian Classification Algorithm
ABC-Miner is a Bayesian classification algorithm based on the Ant Colony Optimization (ACO) meta-heuristic. The algorithm learns Bayesian network Augmented Näıve-Bayes (BAN) classifiers, where the class node is the parent of all the nodes representing the input variables. However, this assumes the existence of a dependency relationship between the class variable and all the input variables, and...
متن کاملAnt colony algorithms for constructing Bayesian multi-net classifiers
Bayesian Multi-nets (BMNs) are a special kind of Bayesian network (BN) classifiers that consist of several local Bayesian networks, one for each predictable class, to model an asymmetric set of variable dependencies given each class value. Deterministic methods using greedy local search are the most frequently used methods for learning the structure of BMNs based on optimizing a scoring functio...
متن کاملABC-Miner: An Ant-Based Bayesian Classification Algorithm
Bayesian networks (BNs) are powerful tools for knowledge representation and inference that encode (in)dependencies among random variables. A Bayesian network classifier is a special kind of these networks that aims to compute the posterior probability of each class given an instance of the attributes and predicts the class with the highest posterior probability. Since learning the optimal BN st...
متن کاملeAnt-Miner : An Ensemble Ant-Miner to Improve the ACO Classification
Ant Colony Optimization (ACO) has been applied in supervised learning in order to induce classification rules as well as decision trees, named AntMiners. Although these are competitive classifiers, the stability of these classifiers is an important concern that owes to their stochastic nature. In this paper, to address this issue, an acclaimed machine learning technique named, ensemble of class...
متن کاملA Study on Ant Colony Optimization with Association Rule
Ant miner is a data mining algorithm based on Ant Colony Optimization (ACO). Ant miner algorithms are mainly for discovery rule for optimization. Ant miner + algorithm uses MAX-MIN ant system for discover rules in the database. Soil classification deals with the systematic categorization of soils based on distinguished characteristics as well as criteria. The proposed model delivers to Ant mine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Memetic Computing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014